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ABSTRACT: In the Chromosome-Centric Human Proteome Project (C-HPP), false-
positive identification by peptide spectrum matches (PSMs) after database searches is a
major issue for proteogenomic studies using liquid-chromatography and mass-
spectrometry-based large proteomic profiling. Here we developed a simple strategy
for protein identification, with a controlled false discovery rate (FDR) at the protein
level, using an integrated proteomic pipeline (IPP) that consists of four engrailed steps
as follows. First, using three different search engines, SEQUEST, MASCOT, and MS-GF
+, individual proteomic searches were performed against the neXtProt database. Second,
the search results from the PSMs were combined using statistical evaluation tools
including DTASelect and Percolator. Third, the peptide search scores were converted
into E-scores normalized using an in-house program. Last, ProteinInferencer was used to filter the proteins containing two or
more peptides with a controlled FDR of 1.0% at the protein level. Finally, we compared the performance of the IPP to a
conventional proteomic pipeline (CPP) for protein identification using a controlled FDR of <1% at the protein level. Using the
IPP, a total of 5756 proteins (vs 4453 using the CPP) including 477 alternative splicing variants (vs 182 using the CPP) were
identified from human hippocampal tissue. In addition, a total of 10 missing proteins (vs 7 using the CPP) were identified with
two or more unique peptides, and their tryptic peptides were validated using MS/MS spectral pattern from a repository database
or their corresponding synthetic peptides. This study shows that the IPP effectively improved the identification of proteins,
including alternative splicing variants and missing proteins, in human hippocampal tissues for the C-HPP. All RAW files used in
this study were deposited in ProteomeXchange (PXD000395).

KEYWORDS: false discovery rate, proteogenomics, integrated proteomic pipeline, E-value, E-score, ProteinInferencer, missing protein,
alternative splicing variant

■ INTRODUCTION

Proteogenomic analysis is a technique commonly used to
identify protein-coding genes and transcripts from various
organisms by mapping mass spectrometry (MS) data obtained
from biologically derived proteins directly to genomic or
transcript sequences.1−4 This approach has been used to
identify novel protein-coding genes, new alternative splicing
and sequence variants, new translational initiation sites, short
open reading frames, as well as missing proteins, and it has also
been used to classify pseudogenes as protein-coding or
noncoding genes.1−4 A major challenge in proteogenomics
has been the lack of sufficient proteomic analysis data.5

Therefore, generating more proteomic data has been an
ongoing, large-scale initiative in this field. As an example, the
community-driven Chromosome-Centric Human Proteome

Project (C-HPP) is a worldwide project initiated by proteomic
researchers to create expression profiles for all human
chromosomes.6,7 Recently, proteogenomic approaches have
attracted particular interest, with large-scale human proteomic
analyses identifying large numbers of peptides and pro-
teins.5,8−10

A number of different groups have reported the identification
of human proteins from analyses of their own proteomes. For
example, Kim et al.8 conducted a large-scale analysis of MS data
obtained from the human proteome. This study employed a
nonredundant database containing three- and six-frame trans-
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lations of Ensembl transcripts and gene models from the
Encyclopedia of DNA Elements (ENCODE) database; 17 294
genes, 84% of the total annotated protein-coding genes in
human, were mapped with no protein-level false discovery rate
(FDR) and inclusion of single-peptide identifications as short as
six amino acids. In other human proteogenomic work by
Wilhelm et al. using a global target-decoy approach,9 18 097
(92%) of the 19 629 human genes were annotated in SwissProt
with no protein-level FDR. In another example, Zhang et al.10

used a 2% FDR for PSMs and a minimum of two unique
peptide sequences to identify a given protein within the full
data set (95 samples, 1425 raw data); they also reported that
this approach led to an unacceptably high FDR of 32% at the
protein level. Therefore, they ultimately used a 0.1% FDR for
PSMs to achieve a protein-level FDR of 2.64%.
Although combining data from multiple experiments may

increase protein coverage, the advantage of using multiple data
set comes at the expense of higher false-positive protein
identification rates.11 Therefore, in a large-scale proteomic
analysis, reliable protein identification is especially important, as
demonstrated by a deep dive examination of the spectra for a
large class of exceptional identifications (hundreds of olfactory
receptors, none of which was confirmed).12

To improve the number of proteins identified in shotgun
proteomics, Balgley et al.13 and Jones et al.14 demonstrated that
different search engines do not result in the same peptide
identifications for large-scale data sets, particularly for PSMs
that score close to the threshold for acceptance or rejection.
This suggests that it should be possible to select more proteins
from the spectra set by employing multiple search engines if
there is a framework suitable for combining the results. In other
words, the results from several search engines can be combined
to improve the rate of true positives.14 Ma et al.15 and Jones et
al.14 demonstrated that combining results from several search
engines can increase the number of protein and peptide

identifications with a high confidence level. Recently, the
“picked” target-decoy strategy has been developed, which
combines scores generated by multiple search engines for
protein-level FDR estimation in large proteomic data sets;16 it
resulted in the removal >3000 claimed proteins from refs 8 and
9.
We developed an integrated proteomic pipeline (IPP) to

improve the correct identification of proteins with a controlled
FDR of 1.0% at the protein level for large-scale proteomic
studies such as the C-HPP. We used three database search
engines, SEQUEST,17 MASCOT,18 and MS-GF+,19 as well as
the validation tools DTASelect20 and Percolator21 (and Mascot
Percolator22). Then, we assembled the validated peptides using
ProteinInferencer,23 resulting in combined peptide data with
normalized peptide spectrum match (PSM) E-scores from
three different search engines. We reported a chromosome 11-
centric human proteome analysis from human brain hippo-
campus tissue, as a model study, with the gene clusters
extracted from a specific biological process or molecular
function in gene ontology.24 We also showed that various
protein variants, such as translated lncRNA variants, novel
alternative splicing variants (ASVs), and single amino acid
variants, were identified in a chromosome-based study using
customized database.25

We represents a reanalysis of data set (PXD000395)
published25 in the previous paper to compare the performance
between conventional and integrated proteomic pipelines (CPP
and IPP, respectively) for protein identification with a
controlled FDR of <1% at the protein level. Additionally, we
used our pipeline to find more number of ASVs and missing
proteins in human hippocampal tissues.

Figure 1. Proteomic data analysis comparison between a conventional proteomic pipeline (CPP) and an integrated proteomic pipeline (IPP) for
protein identification. A total of 144 RAW files were processed by RawExtractor and MM File Conversion. The neXtProt database was used for a
spectral library search by three different search engines. Identified peptides were assembled using ProteinInferencer, and protein false discovery rate
(FDR) control was conducted. Using the IPP, 5756 proteins containing two or more peptides were identified (at least one unique peptide
corresponding to one protein in the neXtProt database) with a controlled FDR of 1.0% at the protein level in human hippocampal tissues.
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■ EXPERIMENTAL SECTION

Sample Preparation and LC−MS/MS Analysis

Using three sets of human hippocampal tissues (from controls
and patients with epilepsy and Alzheimer disease), soluble
fractions I and II and the insoluble fraction were used in
proteomic analyses for the workflows using multiple search
engines (Figure 1). This is the same method as used in our
previous study.24

Liquid Chromatography Tandem Mass Spectrometry
(LC−MS/MS) Conditions for the Analysis of Synthetic
Peptides

Synthetic peptides were purchased from Anygen (Gwangju,
South Korea). To confirm peptide fragmentation of missing
proteins, we performed the analysis using LTQ-Orbitrap mass
spectrometer (Elite version; Thermo Fisher Scientific, Wal-
tham, MA) equipped with the EASY-nLC system (Thermo
Fisher Scientific) using collision-induced dissociation (CID)
MS/MS fragmentation. The details of the peptide preparation
and MS conditions were similar to those reported by Hwang et
al.25 with minor modifications. A total of 11 synthetic peptides
were diluted with 50 mM ammonium bicarbonate until the
concentration of each peptide reached 1 pmol/μL. The diluted
synthetic peptides were reduced using dithiolthreitol (final
concentration at 5 mM) for 45 min at 60 °C with gentle
shaking. Next, iodoacetamide was added from 100 mM stock to
a final concentration at 10 mM. Reduced peptides were
incubated for 45 min at room temperature in the dark. The
sample was lyophilized in the SpeedVac system (Thermo
Scientific, Wiesbaden, Germany). For MS analysis, a pooled
sample of 11 peptides was diluted with 0.1% formic acid to 100
fmol/μL. Each synthetic peptide (500 fmole) was injected at a
flow rate of 4.0 μL/min into the C18 trap column [180 μm
internal diameter (ID) × 20 mm, 5 μm, 100 Å] and analyzed at
a flow rate of 0.3 uL/min into a C18 analytical column (100 μm
ID × 200 mm, 3 μm, 100 Å). The LC gradient using buffer A
(99.9% water and 0.1% formic acid) and buffer B (99.9%
acetonitrile and 0.1% formic acid) was as follows: 5% buffer B
for 15 min, which was ramped up to 15% over 5 min, to 50%
over 75 min, and to 95% over 1 min, at which it was maintained
for 13 min and then decreased to 5% for another 11 min. The
full scan resolution was 120 000 at m/z 400. The six most
intense ions were sequentially isolated for tandem MS CID
scans were acquired using the LTQ mass spectrometer with an
activation time of 10 ms, charge state of 2+ or more,
normalized collision energy in CID of 35%, and an isolation
window CID of 2.0 Da. Previously fragmented ions were
excluded for 180 s for all MS/MS scans, and the molecular ions
of 11 peptides were included for MS/MS. The MS1 mass scan
range was 400−2000 m/z. The electrospray voltage was
maintained at 2.4 kV, and the capillary temperature was set
at 250 °C.
Data Analysis

The 144 (3 samples × 2 protein fractions × 12 peptide
fractions × 2 fragmentation methods) RAW MS data files
(PXD000395) comprising a total of ∼3 600 000 MS/MS
spectra obtained from LTQ-Orbitrap Velos were converted
into .ms2 (for SEQUEST) and .mgf (for MASCOT and MS-
GF+) files using the freeware program RawExtractor version
1.9 (The Scripps Research Institute, La Jolla, CA) and MM File
Conversion Tools version 3.9 (http://www.massmatrix.net/
mm-cgi/downloads.py). The CID and electron-transfer dis-

sociation (ETD) MS/MS spectra were searched separately
against the neXtProt26 database using three proteome search
engines (release 09, 2014; http://www.nextprot.org), which
contain 20 055 human protein sequences (target sequences)
with reverse sequences as a decoy database. The Decoy
database was generated by reverse reading the uploaded
FASTA file of neXtProt database in the IP2 system (Integrated
Proteomic Application, San Diego, CA) developed as a server
side platform. As shown in Figure 1, the 144 MS/MS spectra
files were searched using SEQUEST, MASCOT, and MS-GF+
with the same parameter set: precursor ion tolerance, 50 ppm
(ppm); fragment ion tolerance, 0.8 Da; missed cleavages, 3; and
modification: carbamidomethyl cysteine (fixed) and oxidized
methionine (variable), and enzyme (full tryptic).
Then, for peptide validation, the score threshold for PSMs

was set at 1% FDR. Estimated FDRs were calculated using
DTASelect (version 2.0, http://fields.scripps.edu/DTASelect/)
for SEQUEST search results and the MASCOTPercolator
(version 2.02, http://www.sanger.ac.uk/Software/analysis/
MascotPercolator/) and Percolator (version 1.14, http://
noble.gs.washington.edu/proj/percolator/) for MASCOT
search results. For all of the search results obtained from the
three search engines combined, controlled FDR was calculated
using ProteinInferencer. To determine whether a known single
amino acid variation (SAAV) in neXtProt could convert the
missing proteins into known proteins, we cross-checked all
identified peptides with the result of SAAVs to avoid
misidentification of proteins, despite the correct peptide
identification of SAAVs using a customized database.25 To
find missing proteins, we checked all identified spectra in the
latest version of neXtProt (release 02, 2016), and all identified
extraordinary proteins including ASVs with two or more unique
peptides were considered.
To verify the spectra from synthetic peptides, we converted

the obtained MS RAW file into a .ms2 file using RawExtractor
version 1.9 and searched against 11 synthetic peptide database
using SEQUEST with the following parameter set: precursor
ion tolerance, 50 ppm; fragment ion tolerance, 0.8 Da; missed
cleavages, 0; and modification: carbamidomethyl cysteine
(fixed) and oxidized methionine (variable).

Calculation of the E-Score

The E-scores were calculated for all PSMs in the three search
engines via the following steps. Histograms of the XCorr value
(SEQUEST), PEP score (MASCOT), and RAW score (MS-GF
+) were generated for every log-transformed PSM subject to a
neXtProt database search (Figure S1). Additionally, using the
decoy-matched PSM, we generated a histogram of decoy PSMs,
which is similar to incorrect target PSMs. Two histograms were
log-transformed and calculated independently for each result.
Then, least-squares lines (red line) were fitted using logarithmic
number of decoy PSMs from each search engine. E-values of
target PSMs were calculated using the slope (a) and intercept
(b) of the least-squares line from decoy PSMs ((E-value = a*x
(XCorr value, PEP score, and RAW score) + b)). The E-value
is used to normalize the score and can be calculated for each
PSM based on the score distribution of each spectrum obtained
from multiple search engine results.27,28 The E-value is a widely
used statistical metric to determine significance levels, and its
use in proteomics was previously validated.28,29 Finally, the E-
scores were calculated as the negative log of the E-values (E-
score = −log10 E-value) from target PSMs. We added this
discussion and followed the figures in the manuscript and the
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supplementary figure (Figure S1). Regardless of same peptide
or different peptide, E-scores were independently calculated by
results from search engine such as SEQUEST, MASCOT, and
MS-GF+, respectively. We used E-scores as input data for
ProteinInferencer to control the global protein-level FDR. To
use ProteinInferencer, the input file needs to be converted into
DTASelect-filter.txt file format. Therefore, the files generated
from Percolator and MS-GF+, such as .tab, .tsv, and .mzid, were
converted into DTASelect-filter.txt files using an in-house
program coded by Python script (version 2.7). ProteinInfer-
encer can be downloaded for free at http://fields.scripps.edu/
downloads.php. For details of the system requirements and
input DTASelect-filter.txt file information, see the READ-ME
file at the following Web site (http://www.proteomicswiki.
com/wiki/index.php/ProteinInferencer).

■ RESULTS AND DISCUSSION

Protein-Level FDR Using Large Data Sets

In the initial protein assembly derived from the MASCOT
results, we identified 62 023 unique peptides (9 253 proteins)
with a q value of <0.01 at the PSM level. The q values can be
assigned to each PSM and used to estimate the FDR. However,
the application of an FDR of <1% at the PSM level resulted in
an unacceptably high FDR of 59.7% at the protein level when
combining the individual data set of 144 RAW files (Figure 2a).

On the contrary, to reduce the FDR at the protein level, we
applied an advanced statistical method with a posterior error
probability of <0.01 from the Percolator results at the PSM
level. This filtering procedure resulted in the identification of a
total of 52 262 unique peptide sequences from the 144 RAW
files, representing 7225 proteins with a protein-level FDR of
5.9% (Figure 2b). These numbers were gradually increased by
combining the PSMs from very large data sets from multiple
experiments. Although these methods increase protein cover-
age, they also increase the protein-level FDR.11 Therefore,
protein inference must be carefully controlled in large-scale
proteomic experiments.12,16

Improved of Protein Identification

Table 1 depicts the proteomic search results using SEQUEST,
MASCOT, and MS-GF+ with the CPP, in which 5183, 5060,

and 4977 proteins were identified, respectively, at a protein-
level FDR of 1.0% with a threshold of two or more peptides for
each search engine. Comparing protein matches among all
three search engines and with any one of the search engines, a
total of 661 proteins were identified, namely, 247 from Mascot,
176 from MS-GF+, and 238 proteins from SEQUEST (Figure
3a). These proteins are classified mainly as plasma membrane
components (5.96 × 10−6 < p value <1.72 × 10−4) with low
abundance. When the protein data from the three search
engines were combined, a total of 4453 (77.9%) proteins were
commonly identified with a controlled FDR of 1.0% at the
protein level. Because different search engines produce different
peptide identifications, we employed more than one search
engine, which could increase the number of proteins (and
peptides) identified.13 Jones et al.14 demonstrated that
combining search results using a well-controlled FDR not
only enhanced the number of peptide identifications but also
increased the confidence in these identifications. After applying
the IPP using three different search engines to search, 5756
proteins with a controlled FDR of 1.0% at the protein level
were identified against the neXtProt database, containing two
or more peptides including at least one unique peptide in a
protein from the neXtProt database (Table 1). Overall, a total
of 63 895 peptides (345 736 PSMs) were identified, considering
decoy hits from the decoy sequences with a protein-level FDR
of 1.0% (Supplementary Excel Table 1). Among the 5756
proteins identified using the IPP, 4442 of them overlapped with
the 4453 proteins identified from the combined protein data set
using the three different search engines Therefore, 1314
proteins were uniquely identified using the IPP at the same
protein FDR of <1% (Figure 3b). We believe that these 1314
proteins have low abundance (defined as proteins matching to
fewer than four peptides). Assuming that low-abundance
proteins with a small number of peptide assignments would
be identified, higher percentages of assignments of peptide with

Figure 2. Comparison of accumulated false discovery rates (FDRs)
among peptide spectrum matches (PSMs), peptides, and proteins
from MASCOT search results using the human hippocampal data set.
(a) Proportions of accumulated FDRs of proteins (black solid line),
peptides (black dotted line), and PSMs (black dashed line) with
accumulated estimated FDRs derived at the 1% q value from
MASCOT search results. (b) Proportions of accumulated FDRs of
proteins (black solid line), peptides (black dotted line), and PSMs
(black dashed line) with accumulated estimated FDRs derived at 1%
posterior error probabilities from the MASCOT search results.

Table 1. Number of Proteins and Peptides Identified in the
neXtProt Database Using the Conventional Proteomic
Pipeline (CPP) versus Integrated Proteomic Pipeline (IPP)

number of proteins number of peptides protein FDR (%)

SEQUEST 5183 60 925 1
MASCOT 5060 46 339 1
MS-GF+ 4977 56 937 1
CPP 4453 66 571 1
IPP 5756 63 895 1
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a small number indicated that IPP can enhance the detection of
low-abundance proteins
To evaluate the quality of the proteins identified using IPP,

we initially examined the number of peptides per identified
protein for all search results. Figure 4a shows the distribution of
the number of identified peptides at a 1% protein-level FDR
using SEQUEST, MASCOT, and MS-GF+ from ProteinInfer-
encer. Using the CPP, proteins with assignments of two, three,
or four peptides were lost, while such proteins were increased
using the IPP (Figure 4b). Thus, use of the IPP may enhance
the detection of low abundance proteins such as ASVs and
missing proteins.
Alternative Splicing Variants

Paik and Hancock suggested that the identification and
functional study of ASVs is one of the main objectives of the
C-HPP.30 Because ASVs have high homology from a single
gene, it is necessary to apply a proteogenomic method to
achieve accurate differentiation of ASV with one or more
unique peptides rather than shared peptides identified from
MS/MS spectra. In human hippocampal tissue, applying the
CPP, we identified 359, 277, and 369 ASVs using SEQUEST,
MASCOT, and MS-GF+, respectively (Supplementary Excel
Table 2). When the ASVs from the three search engines were
combined, a total of 182 (35.8%) ASVs were commonly
identified with an FDR of 1% at the protein level (Figure 5a).
On the contrary, after applying the IPP using the three different
search engines, a total of 477 ASVs were identified, with a
controlled FDR of 1.0% at the protein level including at least
one unique peptide (Supplementary Excel Table 3). Compar-
ing the CPP and IPP results, 15 and 310 ASVs, respectively,
were identified in only one of these pipelines (Figure 5b).

Within the controlled FDR at the protein level, the number of
ASV unique peptides identified using the IPP results was
greater than using the CPP (Figure 5c). The smaller the
number of unique ASV peptides, the greater the number of
identified ASVs. This indicates that the IPP could be used to
maximize the number of identified peptides without a loss of
accuracy, identifying 2.8 fold ASVs than the number identified
using the CPP.
Missing Proteins

Missing proteins that lack sufficient experimental evidence from
biological samples at the protein level are classified into five
levels of protein evidence (PE), namely, evidence at the protein
level (PE = 1), transcript level (PE = 2), inferred from
homology (PE = 3), predicted (PE = 4), or uncertain (PE = 5),
by the neXtProt database.31 The published metrics for the
Human Proteome Project 2015 contain a guideline for high-
confidence identification of missing proteins and information
for neXtProt (release 09, 2014), including 2948 missing and
616 uncertain proteins out of a total 20 055.32 In February
2016, neXtProt reported a total number of human protein
entries of 20 055, including 2949 missing and 588 uncertain
proteins. Deutsch et al. suggested using a stringent FDR

Figure 3. Comparison of the numbers of identified proteins from the
neXtProt database using the integrated proteomic pipeline (IPP)
versus conventional proteomic pipeline (CPP). (a) Number of
proteins identified by three different proteomic search engines in the
human hippocampal data sets. (b) Using the IPP, ∼29% more high
confidence proteins were identified than the overlapping 4453 proteins
identified using the three different search engines at protein-level FDR
of <1%.

Figure 4. Comparison of the numbers of proteins identified using the
integrated proteomic pipeline (IPP) versus conventional proteomic
pipeline (CPP) using three different search engine results. (a)
Distribution of unique peptide sequence of the identified proteins at
a 1% false positive rate (FDR) using SEQUEST, MASCOT, and MS-
GF+ with single hits. (b) Distribution of unique peptide sequence of
the identified proteins at a 1% FDR using the IPP and CPP.
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threshold (<1% at the protein level) and discussed the
misidentification of proteins in large data sets.33

In our study, using the IPP, a total of 25 missing protein
candidates (PE2, PE3, and PE4) and 12 uncertain protein
candidates (PE5) were found by two or more peptides at a
protein-level FDR of 1% from the neXtProt database (release
09, 2014). Shown in Figure 6 are more missing proteins as well
as uncertain proteins identified using the IPP than the CPP. In
addition, the number of missing proteins identified using the
IPP at the PE2 level was identified to be more than 3 times that
using the CPP. Furthermore, uncertain proteins at the PE5
level were not identified using the CPP, but 12 were identified
using with the IPP. However, we considered that the estimated
FDR is an imperfect assumption, for identifying missing
proteins; therefore, we performed a comparison of several
reference databases and analyzed their corresponding synthetic
peptide as follows. To obtain evidence of missing and uncertain
protein, we examined the results from the repositories of
GPMDB, ProteinAtlas (HPA), and PeptideAtlas (Table S1).
The missing and uncertain protein candidates were present in
at least one of the three repositories, while the 10 missing and 1
uncertain protein candidates were found in all three
repositories, and the 10 missing and 3 uncertain protein
candidates were uniquely identified using the IPP alone. We
recognized that 10 missing protein candidates containing a
small number of identified peptides were accepted at the PE1
level in the latest version of neXtProt (release 02, 2016)
Additionally, nine of uncertain proteins were categorized into

“canonical” or “marginally distinguished” in the latest version of
Peptide Atlas (Table S1).
Using the IPP, we identified 10 missing proteins from

neXtProt (release 09, 2014), as shown in Table 2, which
corresponds to 1.5 times more proteins than the number
identified using the CPP. This indicates that our IPP has the
ability to identify low abundance proteins, as discussed in
Figure 4. Comparing the IPP and CPP results, four missing
proteins were identified by the IPP only (Table 2). In
accordance with the new data interpretation guidelines for
the C-HPP, we manually validated and compared all spectra of
the missing protein candidates and their corresponding
synthetic peptides at the PSM level. As a result, we finally
claimed two missing proteins [glutamate receptor ionotropic
kainate 5 (GRIK5, NX_Q16478) and ecotropic viral
integration site 2A (EVI2A, NX_P22794)] against the latest
version of neXtProt (release 02, 2016) (Table 2). For example,
two different peptides, SFNYPSASLICAK and LYSAGAGGD-
AGSAHGGPQR, from NX_Q16478 of GRIK5 were identified
and matched to their corresponding synthetic peptides well
(Figure 7).

■ CONCLUSIONS
In proteogenomic studies, false-positive protein identifications
generated by large PSMs after database searching tend to result
in higher protein-level FDRs. Here we have developed an IPP
to improve the confidence in protein identification with a
controlled protein-level FDR of <1% based on the integration
of validated peptide search results using SEQUEST, MASCOT,
and MS-GF+ with the neXtProt (release 09, 2014) database.
At a protein-level FDR controlled at <1%, 5756 proteins in

human hippocampal tissues were identified using IPP in
comparison with 4453 proteins using CPP. We identified 477
ASVs and 10 missing proteins using IPP, which corresponds to
2.8 and 1.5 times more proteins than when using CPP,
respectively. Therefore, we were able to identify more missing
proteins with a low abundance than using CPP at a given level
of global protein-level FDR control. Further use of IPP should

Figure 5. Comparison of the numbers of identified alternative splicing
variants (ASVs) using the integrated proteomic pipeline (IPP) versus
conventional proteomic pipeline (CPP). (a) A total of 182 ASVs were
commonly identified among three different proteomic search engines
in human hippocampus data sets at protein-level false discovery rate
(FDR) of <1%. (b) Using the IPP, a total of 477 ASVs were identified
at a protein-level FDR of <1%. Additionally, 310 ASVs were identified
from human hippocampal tissues using the IPP. (c) Comparison of
IPP and CPP in terms of the distribution of unique ASV peptides
among the identified ASV proteins at a 1% FDR.

Figure 6. Distribution of protein evidence (PE) values obtained from
the numbers of proteins identified in the neXtProt database using the
conventional proteomic pipeline (CPP) versus integrated proteomic
pipeline (IPP). The total number of proteins identified in neXtProt
was compared with those identified using MASCOT, SEQUEST, and
MS-GF+. The missing protein candidates were obtained from proteins
identified at PE2, PE3, and PE4 levels.
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be of great benefit to proteogenomic analyses in C-HPP studies
to identify more ASVs as well as missing proteins.
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